290 research outputs found

    Need for Speed: Mechanical Regulation of a Replicative Helicase

    Get PDF
    There is much debate about how helicases unwind DNA during DNA replication and how their activity is regulated. In this issue, Johnson et al. (2007) shed light on this conundrum using a single molecule approach to dissect the behavior of the T7 DNA helicase

    The Rule of Seven Revealed by Observing DNA Annealing in a Nanocontainer

    Get PDF

    Acidification of the Oxygen Scavenging System in Single-Molecule Fluorescence Studies: In Situ Sensing with a Ratiometric Dual-Emission Probe

    Get PDF
    For most of the single-molecule fluorescence studies to date, biomolecules of interest are labeled with small organic dyes which suffer from their limited photostability evidenced by blinking and photobleaching. An enzymatic oxygen scavenging system of glucose oxidase and catalase is widely used to improve the dye photostability but with the unfavorable side effect of producing gluconic acid. It is known that accumulation of this byproduct in solution can lead to considerable acidification, but the uncertainty in its severity under experimentally relevant conditions has been a long-standing area of concern due to the lack of a suitable assay. In this paper we report a fluorescence-based analytical assay for quantitatively assessing the acidification of oxygen scavenging systems in situ. By using a ratiometric, dual-emission dye, SNARF-1, we observed the presence and, for the first time, measured the severity of solution acidification due to the oxygen scavenging system for a number of conditions relevant to single-molecule studies. On the basis of the quantitative analysis of the acidification profile under these conditions, practical guidelines for optimizing the oxygen scavenging system are provided. This in situ assay should be applicable to a large variety of future single-molecule fluorescence studies

    A rule of seven in Watson-Crick base-pairing of mismatched sequences

    Get PDF
    Sequence recognition through base-pairing is essential for DNA repair and gene regulation, but the basic rules governing this process remain elusive. In particular, the kinetics of annealing between two imperfectly matched strands is not well characterized, despite its potential importance in nucleic acid–based biotechnologies and gene silencing. Here we use single-molecule fluorescence to visualize the multiple annealing and melting reactions of two untethered strands inside a porous vesicle, allowing us to precisely quantify the annealing and melting rates. The data as a function of mismatch position suggest that seven contiguous base pairs are needed for rapid annealing of DNA and RNA. This phenomenological rule of seven may underlie the requirement for seven nucleotides of complementarity to seed gene silencing by small noncoding RNA and may help guide performance improvement in DNA- and RNA-based bio- and nanotechnologies, in which off-target effects can be detrimental

    Activated GTPase movement on an RNA scaffold drives co-translational protein targeting

    Get PDF
    Approximately one-third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane. The proper localization of these proteins is mediated by a universally conserved protein-targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences and, through interactions with the SRP receptor delivers them to the protein-translocation machinery on the target membrane. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA for which precise functions have remained elusive. Here we used single-molecule fluorescence microscopy to show that the Escherichia coli SRP–SRP receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA, where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism for ensuring the productive exchange of the targeting and translocation machineries at the ribosome exit site with high spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the easy exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes
    • …
    corecore